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Abstract. The fragmentation of deuterons into pions emitted forward in the kinematic region forbidden
for free nucleon-nucleon collisions is analyzed. The inclusive relativistic invariant spectrum of pions and
the tensor analyzing power T20 are investigated within the framework of an impulse approximation using
various deuteron wave functions. The influence of P-wave inclusion in the deuteron wave function is also
studied. The invariant spectrum is shown to be more sensitive to the amplitude of the NN → πX process
than the tensor analyzing power T20. It is shown that the inclusion of the non-nucleonic degrees of freedom
in a deuteron results in a satisfactory description of the data for the inclusive pion spectrum and improves
the description of the data about T20. According to the data, T20 has very small positive values, less than
0.2, which contradicts the theoretical calculations ignoring these degrees of freedom.

PACS. 25.10.+s Nuclear reactions involving few-nucleon systems – 24.70.+s Polarization phenomena in
reactions – 24.10.Jv Relativistic models

1 Introduction

Important information of the deuteron structure at small
distances arises from the study of reactions of hadro-pro-
duction in proton-deuteron and deuteron-deuteron col-
lisions in the kinematic region forbidden for the free
nucleon-nucleon interaction [1,2]. These are the so-called
cumulative processes. This kinematic region corresponds
to values for the light-cone variable x = 2(E′ + p′)/(ED +
pD) ≥ 1, where E′, ED and p′, pD are the energies and
momenta of the final hadron and deuteron, respectively.
The nucleon momentum distributions in the deuteron, ex-
tracted from the reaction Dp → pX at forward proton
emission and eD-inelastic scattering [3], actually coincide
with each other (see, for example, [4]). One can conclude
that hadron and lepton probes lead to the same informa-
tion on the deuteron structure. The so-called Paris [5],
Reid [6] and Bonn [7] deuteron wave functions (DWFs)
reproduce rather well the data on the Dp → pX reac-
tion for internal momenta k =

√
m2/(4x(1 − x)) − m2

up to 0.25 GeV/c within the framework of the impulse
approximation (IA) [4]). The inclusion of corrections to
the IA related to secondary interactions allows one to de-
scribe the data on the deuteron fragmentation Dp → pX
at k > 0.25 GeV/c [8].

The investigation of polarization phenomena by deu-
teron fragmentation at intermediate and high energies in
the kinematic region forbidden for hadron emission by free
N -N scattering has recently become very topical. Cu-
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mulative proton production in the collision of polarized
deuterons with the target results in information about the
deuteron spin structure at small internuclear distances.
This can be seen from the experimental and theoretical
study of deuteron fragmentation into protons at a zero
angle [8–10]. The theoretical analysis of this reaction has
shown that the tensor analyzing power T20 and the po-
larization transfer coefficient κ are more sensitive to the
deuteron wave function (DWF), particularly to the re-
action mechanism, than the inclusive spectrum [8]. At
present, not a single DWF relativistic form can describe
T20 measured by Dp → pX stripping at x ≥ 1.7. On
the other hand, the inclusion of the reaction mechanism,
namely the impulse approximation and the secondary in-
teraction of the produced hadrons, can describe both the
inclusive spectrum and T20 at x ≤ 1.7 using only the
nucleon degrees of freedom [8]. Among other things this
phenomenon can be due to the fact that the deuteron
structure at a high (> 0.20 GeV/c) internal momentum
(short internuclear distances < 1 fm) is determined by
non-nucleonic degrees of freedom. The inclusion of non-
nucleonic degrees of freedom, (it can be a six-quark state,
∆∆, NN�, NNπ and other states in the deuteron) allowed
one to describe the data on the inclusive proton spectrum
at x ≥ 1.7 [8]. A number of papers were dedicated to the
theoretical analysis of the deuteron stripping to protons,
see for example, references in [2,8]. However, to date there
has been no unified theoretical description of T20 for the
whole kinematic region of protons emitted forward by the
Dp → pX stripping.
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If we try to study the manifestation of non-nucleonic
degrees of freedom, it is natural to investigate the cu-
mulative production of different hadrons having different
quark contents. Interesting experimental data on T20 in
the reaction Dp → πX, where the pion is emitted for-
ward, have been published recently [11]. They show very
small, approximately constant, value of the tensor analyz-
ing power T20 for the deuteron fragmentation into pions
Dp → πX at x ≥ 1. The mechanism of this reaction is
mainly an impulse approximation as the secondary inter-
action or the final-state interaction (FSI) is very small and
can be neglected [12]. The large yield of high-momentum
pions produced by p-D and p-A collisions in the kinemati-
cal region forbidden for free N -N scattering was explained
by models incorporating few-nucleon correlation [2,13] or
multi-quark bags [14,15]. However, the polarization phe-
nomena in the deuteron fragmentation into pions were not
explained by these approaches.

In this paper, we present a relativistic invariant anal-
ysis of the deuteron tensor analyzing power T20 and
the unpolarized-pion spectrum in the backward inclusive
p + D → π(180◦) + X reaction (in the deuteron rest
frame). The main goal is to describe this reaction in a
consistent relativistic approach using a nucleon model of
the deuteron. A fully covariant expression for all quan-
tities is obtained within the Bethe-Salpeter (BS) formal-
ism [16]. In this way, we obtain general conclusions about
the amplitude of the process, which can not be drawn
in the non-relativistic approach. On the other hand, the
non-relativistic limit will be calculated, and some links
to non-relativistic corrections can be found. Our analysis
of deuteron models can be very important to search for
quark nuclear phenomena.

2 Relativistic impulse approximation

Let us consider the inclusive reaction of deuteron fragmen-
tation into a pion:

−→
D + p → π(0◦) + X , (1)

within the framework of the impulse approximation, fig. 1.
The amplitude of this process T π

pD can be written in
the following relativistic invariant form:

T π
pD ≡ T (Dp → πX) =

(
ŪY ΓNN

)
αβ

ū
(σp′ )
γ (p′)

×
(

n̂+m

n2−m2

)
βδ

u(σp)
α (p) (Γµ(D, q)C)δγ ξµ

M (D) , (2)

where (ŪY ΓNN ) is the truncated NN → πY vertex;
α, β, γ and δ are the Dirac indices (with summation over
repeated indices); µ is the Lorentz index; C = iγ2γ0 is the
charge conjugation Dirac matrix and M is the deuteron
spin projection. Here, the deuteron vertex (Γµ(D, q)C) sat-
isfies the BS equation and depends on the relative momen-
tum q = (n − p′)/2 and total momentum D = n + p′ of

Fig. 1. Diagram representing the relativistic impulse approx-
imation discussed in the text.

deuteron, ξµ
M (D) is the four-vector of the deuteron polar-

ization. It satisfies the following equations:

ξµM (D)Dµ = 0 , ξµM (D)ξµM ′(D) = −δM
M ′ ,∑

M

(ξµM (D))�
ξνM (D) = −gµν +

DµDν

M2
D

. (3)

Squaring this amplitude, one can write the relativistic in-
variant inclusive pion spectrum of the reaction Dp → πX
in the following form:

ρπ
pD = επ

dσ

d3pπ
=

1
(2π)3

∫ √
λ(p, n)√
λ(p,D)

×ρµν(D)
[
ρπ

pN · Φµν(D, q)
]m2d3p′

E′ , (4)

where λ(p1, p2) ≡ (p1p2)2 − m2
1m

2
2 = λ(s12,m

2
1,m

2
2)/4 is

the flux factor; p, n are the four-momenta of the target
proton and intra-deuteron nucleon, respectively; ρπ

pN ≡
επdσ/d3pπ is the relativistic invariant inclusive spectrum
of pions arising from interaction of the intra-deuteron nu-
cleon with the target proton. In the general case, this
spectrum can be written as a three-variable function
ρπ

pN = ρ(xF, π⊥, sNN ). The Feynman variable, xF, is de-
fined as xF = 2π||/

√
sNN , where π is the pion momen-

tum in the center of mass of two interacting nucleons and
sNN = (p + N)2.

ρµν(D) is the density matrix of the deuteron [17]:

ρµν(D) = (ξµM (D))�
ξνM (D) =

1
3

(
−gµν +

DµDν

M2
D

)
+

1
2
(Wλ)µνsλ

D

−
[
1
2

(
(Wλ1)µρ(Wλ2)

ρ
ν + (Wλ2)µρ(Wλ1)

ρ
ν

)
+

2
3

(
−gλ1λ2+

Dλ1Dλ2

M2
D

)(
−gµν+

DµDν

M2
D

)]
pλ1λ2

D

(5)

with (Wλ)µν = iεµνγλDγ/MD; sD the spin vector and pD

the alignment tensor of the deuteron.
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The full symmetric tensor Φµν(D, q) in eq. (4) reads as

Φµν(D, q) =
1
4
Tr

[
Ψ̄µ

(
n̂ + m

m

)2

Ψν
p̂′ − m

m

]
=

− f0(n2)gµν + f1(n2)
qµqν

m2
. (6)

Proving eq. (6), we introduce the modified vertex,
Ψµ(D, q):

Ψµ(D, q) =
Γµ(D, q)

m2 − n2 − i0
= ϕ1(n2)γµ + ϕ2(n2)

nµ

m

+
n̂ − m

m

(
ϕ3(n2)γµ + ϕ4(n2)

nµ

m

)
. (7)

Substituting eq. (7) into eq. (6) and calculating the
trace, one finds explicit forms for the invariant func-
tions f0,1:

f0(n2) =
M2

D

m2

(
ϕ1 −

m2 − n2

m2
ϕ3

)
ϕ1

−
(

m2 − n2

m2

)2

(ϕ1 − ϕ3) ϕ3 ;

f1(n2) = − 4
[
ϕ1 + ϕ2 −

m2 − n2

m2

(ϕ2

2
+ ϕ3 + ϕ4

)]
× (ϕ1 + ϕ2) +

M2
D

m2

(
ϕ2 −

m2 − n2

m2
ϕ4

)
ϕ2

−
(

m2 − n2

m2

)2

(ϕ2 + 2ϕ3 + ϕ4) ϕ4 . (8)

The corresponding invariant scalar functions ϕi(n2) of the
deuteron vertex with one on-shell nucleon can be com-
puted in any reference frame. Let us note that in our
case, when one particle is on the mass shell, only four par-
tial amplitudes contribute to the process, namely in the
ρ-spin classification, U =3 S++

1 , W =3 D++
1 , Vs =1 P−+

1

and Vt =3 P−+
1 . We can write ϕi in the deuteron rest

frame in order to relate them to the non-relativistic S-
and D-waves of the deuteron. In this case, the invariant
functions take the following forms:

ND ϕ1 = U − W√
2
−

√
3
2

m

|q|Vt ;

ND ϕ2 = − m

(Eq+m)
U−m(2Eq+m)

|q|2
W√

2
+

√
3
2

m

|q|Vt ;

ND ϕ3 = −
√

3
2

mEq

|q|(2Eq − MD)
Vt ;

ND ϕ4 =
m2

MD(Eq + m)
U − m2(Eq + 2m)

MD|q|2
W√

2

−
√

3
m2

|q|(2Eq − MD)
Vs , (9)

where all the vertex functions are determined in the
deuteron rest frame and all the kinematic variables in

eqs. (9) have to be evaluated in this system; Eq =√
|q|2 + m2. The normalization factor N−1

D = π
√

2/MD

is chosen according to the non-relativistic normalization
DWF: ∫ ∞

0

|q|2d|q|
[
U2(|q|) + W 2(|q|)

]
= 1 . (10)

The relativistic invariant functions f0,1(|q|) (8) can be
rewritten in terms of these spin-orbit momentum wave
functions as

f0(|q|) = N−2
D

M2
D

m2

[(
U − W√

2

)2

+
√

6
|q|
m

(
U − W√

2

)
Vt −

3
2
V 2

t

]
;

f1(|q|) = N−2
D

3M2
D

2|q|2
[
2
√

2UW + W 2 + V 2
t − 2V 2

s

− 4√
3
|q|
m

((
U− W√

2

)
Vt√
2

+
(
U+

√
2W

)
Vs

)]
.

(11)

Then, all the observables can be computed in terms
of positive- and negative-energy wave functions U,W
and Vs, Vt, respectively. The contribution of the positive-
energy waves U,W to the observables results in the non-
relativistic limit. The parts containing the negative-energy
waves Vs, Vt have a pure relativistic origin, and conse-
quently they manifest genuine relativistic correction ef-
fects.

Using the explicit form of the density matrix (5), one
can write

Φ ≡ ρµν Φµν = Φ(u) + Φ
(v)
λ sλ

D + Φ
(t)
λ1λ2

pλ1λ2
D . (12)

The superscripts (u, v, t) denote unpolarized, vector-
polarized and tensor-polarized cases, respectively:

Φ(u)(q) = f0 +
1
3
|q|2
m2

f1 ;

Φ
(v)
λ (q) = 0 ;

Φ
(t)
λ1λ2

(q) =
[
1
3
|q|2
m2

(
−gλ1λ2 +

Dλ1Dλ2

M2
D

)
−

(
−gλ1µ +

Dλ1Dµ

M2
D

)(
−gλ2ν +

Dλ2Dν

M2
D

)
qµqν

m2

]
f1 .

(13)

Let us consider now the case when the deuteron has tensor
polarization. If the initial deuteron is only aligned due to
the pZZ

D component, the inclusive spectrum of the reaction
−→
D + p → π + X (4) can be written in the form

ρπ
pD

(
pZZ

D

)
= ρπ

pD

[
1 + AZZ pZZ

D

]
, (14)

where ρπ
pD is the inclusive spectrum for the case of unpo-

larized deuterons and AZZ ≡
√

2T20 (−
√

2 ≤ T20 ≤ 1/
√

2)
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is the tensor analyzing power. One can write:

ρπ
pD =

1
(2π)3

∫ √
λ(p, n)√
λ(p,D)

[
ρπ

pN ·Φ(u)(|q|)
] m2d3q

Eq
;

(15)

ρπ
pD AZZ = − 1

(2π)3

∫ √
λ(p, n)√
λ(p,D)

×
[
ρπ

pN ·Φ(t)(|q|)
] (

3 cos2 ϑq−1
2

)
m2d3q

Eq
,

(16)

where

Φ(u)(|q|) = N−2
D

M2
D

m2

[
U2 + W 2 − V 2

t − V 2
s

+
2√
3
|q|
m

((√
2Vt − Vs

)
U −

(
Vt +

√
2Vs

)
W

) ]
; (17)

Φ(t)(|q|) = N−2
D

M2
D

m2

[
2
√

2UW + W 2 + V 2
t − 2V 2

s

− 4√
3
|q|
m

((
U − W√

2

)
Vt√
2

+
(
U +

√
2W

)
Vs

) ]
. (18)

It is intuitively clear that the nucleons in the deuteron
are mainly in the states with angular momenta L = 0, 2
(see also the numerical analysis of the solutions of the
BS equation in terms of amplitudes within the ρ-spin
basis [18]), the probability of states with L = 1 (Vs,t)
in eqs. (17),(18) is much smaller than the probability
for the U,W configurations. Moreover, it can be shown
that the U - and W -waves directly correspond to the non-
relativistic S and D ones. Therefore, eqs. (17),(18) with
only U,W waves can be identified as the main contribu-
tions to the corresponding observables, and they can be
compared with their non-relativistic analogs. Other terms
possessing contributions from P-waves are proportional
to q/m (the diagonal terms in Vs,t are negligible). Due
to their pure relativistic origin, one can refer to them as
relativistic corrections.

Let us consider a minimal relativistic scheme which
describes rather well the differential cross-section for such
a process as deuteron break-up A(D, p)X. The minimal
relativistic procedure [19,2] consists in i) replacing the ar-
gument of the non-relativistic wave functions by the light-
cone variable k = (k⊥,k||),

k2 =
m2+k2

⊥
4x(1−x)

−m2; k||=

√
m2+k2

⊥
x(1−x)

(
1
2
−x

)
, (19)

where x = (Eq + |q| cos ϑq)/MD = (ε′ − p′||)/MD; |k⊥| =
p′⊥ in the deuteron rest frame, and ii) multiplying the
wave functions by the factor ∼ 1/(1 − x). This procedure
results in a shift of the argument towards larger values,
and the wave function itself decreases more rapidly. This
effect of suppressing the wave function is compensated by
the kinematic factor 1/(1 − x).

In the BS approach the relativistic effects are of dy-
namic nature [20] and are not reduced to a simple shift

in the arguments. In addition to the S- and D-waves,
the deuteron contains negative-energy components, i.e.,
P-waves. One can see that they play a more important
role in the polarization case and lead to an improvement
in the description of the data.

3 Results and discussion

Below, the calculated results for the inclusive relativistic
invariant pion spectrum and the tensor analyzing power
in the fragmentation process Dp → πX are presented and
compared with the available data [1,11]. These data are
presented as a function of the so-called cumulative scaling
variable xC (“cumulative number”) [21]. For our reaction,
this variable is defined as

xC = 2
(pπ) − µ2/2

(Dp) − MDm − (Dπ)
=

2
t − m2

(t − m2) + (MD + m)2 − sX
≤ 2 . (20)

In the rest frame of the deuteron D = (MD,0), it can be
rewritten in the form

xC = 2
EEπ − ppπ cos ϑπ − µ2/2

MD(E − Eπ − m)
→ 2

E

Tp

α

1 − Eπ/Tp
,

(21)
where α = (Eπ −pπ cos ϑπ)/MD is the light-cone variable.
The value of xC corresponds to the minimum mass (in
nucleon mass units) of the part of the projectile nucleus
(deuteron) involved in the reaction. Values of xC larger
than 1 correspond to cumulative pions.

Deuteron (polarized and unpolarized) fragmentation
into the proton D + A → p(0◦) + X is one of the most in-
tensively studied reactions with hadronic probes. The rea-
son for this interest lies in the facts that the cross-section
is large, and also that a simple relation exists between the
inclusive spectrum and the polarization observables, and
the S- and D-waves of the DWF obtained within the IA.
For example, the tensor analyzing power T20 within the
IA can be written in the following simple form:

T20 = − 1√
2

2
√

2 UW + W 2

U2 + W 2
. (22)

This relation does not depend on the amplitude of the
elementary reaction pn → pX which is taken off the mass
shell in the IA. As is shown in [8], both the differential
cross-section and T20 for fragmentation D+p → p(0◦)+X
can be described within the IA at k ≤ 0.2 GeV/c only. At
larger momentum k, secondary interactions, in particular
the triangle graphs with a virtual pion, have to be taken
into account in order to describe these observables most
satisfactorily.

However, as is shown in [22], for the pion production
D + p → π(0◦)+X over the cumulative region the rescat-
tering mechanism is kinematically suppressed. Therefore,
one can use the IA only for theoretical calculation of the
differential cross-section and tensor analyzing power T20
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Fig. 2. The invariant spectrum of the backward pions in the
deuteron fragmentation reaction calculated in the relativistic
impulse approximation using various types of non-relativistic
DWF. The calculated results are compared with the data
from [1] for a projectile proton momentum Pp = 9 GeV/c.
The dot-dashed curve corresponds to the calculation where
the dependence of the elementary vertex NN → πY on the
relativistic invariant variables has been neglected.

Fig. 3. The invariant spectrum calculated using two forms
of the relativistic DWFs, [23] and [24]. The data are taken
from [1]. The thick solid line corresponds to the DWF [23],
where the total probability of small components is PV =∫ ∞
0

p2dp [V 2
t + V 2

s ] � 0.2 %. The long-dashed and dot-dashed
lines represent the calculations with the Gross DWF using the
mixing parameter λ = 0.0 and 1.0, respectively [25]. This cor-
responds to the probabilities PV = 0.03 % and 1.46 % obtained
for the small component. The thin dashed line corresponds to
the non-relativistic Reid DWF.

Fig. 4. The invariant pion spectrum calculated using the non-
relativistic DWFs obtained by the minimal relativistic scheme
(MRS) [2,19]. The solid, dashed and dot-dashed lines corre-
spond to various DWF forms: RSC, Paris and Bonn. The data
are taken from [1].

for this reaction. The calculated invariant spectrum of pi-
ons produced by the D + p → π(0◦) + X reaction is pre-
sented in figs. 2-3. The vertex NN → πY is taken on the
mass shell and the corresponding differential cross-section
proposed in [26] is used.

A large sensitivity of the inclusive spectrum to this ver-
tex and its small sensitivity to the type of non-relativistic
DWF used can be seen in fig. 2. Figure 3 shows that the
inclusion of the P-wave contribution to the DWF within
the Bethe-Salpeter or Gross approaches results in a bet-
ter (but not satisfactory) description of the data over the
cumulative region. From fig. 4 one can see the effects of
the calculation using the minimal relativistic scheme [2]. It
should be noted that this simpler relativistic scheme gives
better (but not satisfactory) agreement with experiment
for the pion spectrum in the relativistic IA.

The calculated T20 for the reaction of polarized
deuteron fragmentation into cumulative pions is shown in
figs. 5-7. From these figures one can see a small sensitivity
of T20 to the vertex corresponding to the NN → πY pro-
cess. It is also seen that T20 is more sensitive to the DWF
form than the invariant spectrum. The data on T20 are not
described by any DWF used in this paper. Note that there
may be an alternative approach to study the deuteron
structure at small distances which assumes a possible ex-
istence of non-nucleonic or quark degrees of freedom [8,
27–30] in the deuteron and the nucleus. For example, ac-
cording to [2], large momenta of nucleons are due to few-
nucleon correlations in the nucleus. Then the deuteron
structure can be described by assuming quark degrees of
freedom [14,15]. On the other hand, the shape of the high-
momentum tail of the nucleon distribution in the deuteron
can be constructed on the basis of its true Regge asymp-
totics [13], and the corresponding parameters can be found
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Fig. 5. The tensor analyzing power T20 of deuterons. The cal-
culated results are compared with the data from [11] at the pro-
jectile proton momentum Pp = 4.46 GeV/c. The dotted curve
corresponds to the calculation where the internal structure of
the elementary vertex NN → πY has been neglected. The
solid, long-dashed, dot-dashed and dashed lines correspond to
calculations with various types of non-relativistic DWF: RSC,
Paris, relativistic Bonn, and full Bonn, respectively.

Fig. 6. T20 calculated using two forms of relativistic DWFs,
[23] and [24]. Notation as in fig. 3. The data are taken from [11].

from the good description of the inclusive proton spectrum
in the deuteron fragmentation Dp → pX [13,8]. Accord-
ing to [13,8], one can write the following form for Φ̃(u)(|q|)
(see eq. (17)):

Φ(u)(|q|) =
Ek/Eq

2(1 − x)
Φ̃(u)(|k|) , (23)

Fig. 7. T20 calculated with the non-relativistic DWFs using
the minimal relativistic scheme (MRS) [2,19]. The solid, long-
dashed, dashed and dot-dashed lines correspond to the various
DWF forms: RSC, Paris, full and relativistic Bonn. The data
are taken from [11].

where

Φ̃(u)(|k|) =N−1
D

M2
D

m2

[
(1 − α2(3q))

(
U2(|k|) + W 2(|k|)

)
+ α2(3q)

8πx(1 − x)
Ek

G2(3q)(x,k⊥)
]

. (24)

The parameter α2(3q) is the probability for a non-nucleonic
component in the deuteron which is a state of two colorless
(3q) systems:

G2(3q)(x,k⊥)=
b2

2π

Γ (A + B + 2)
Γ (A + 1)Γ (B + 1)

xA(1−x)B e−b|k⊥|.

(25)
Figure 8 presents the invariant pion spectrum calculated
within the relativistic impulse approximation including
the non-nucleonic component in the DWF [8,13]; its prob-
ability α2(3q) is 0.2–0.4 (long-dashed and solid curves, re-
spectively). One can see a good description of the data [1]
at all xC . According to [13,8], analogous results including
non-nucleonic degrees of freedom, can be obtained for the
tensor analyzing power T20. Actually, in [13] only a form
of Φ̃(u)(|k|) has been constructed. However, to calculate
T20 it is not enough, the corresponding orbital waves have
to be known. Let us assume that non-nucleonic degrees
of freedom result in the main contribution to the S- and
D-waves of the deuteron wave function. Constructing new
forms of these waves by including the non-nucleonic de-
grees of freedom we have to require that the square of the
new DWF be equal to the one determined by eq. (24).
Introducing a mixing parameter α = πa/4 one can find
the following forms of new S- and D- waves:

Ũ(|k|) =
√

1 − α2(3q)U(|k|) + cos(α)∆(|k|) ; (26)

W̃ (|k|) =
√

1 − α2(3q)W (|k|) + sin(α)∆(|k|) , (27)
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Fig. 8. The invariant pion spectrum calculated within the
relativistic impulse approximation where non-nucleonic com-
ponents in the DWF [13,8] have been included; its probability
α2(3q) is 0.02–0.04 (long-dashed and solid curves, respectively).
One can have a good description of the data [1] for all xC .

Fig. 9. The tensor analyzing power T20 calculated within the
relativistic impulse approximation allowing for non-nucleonic
components in the DWF, eqs. (26),(27). The solid and long-
dashed lines represent the calculations with the mixing param-
eter a = 0.0 and the probability α2(3q) = 4 %, 3 %, respectively.
The dot-dashed line corresponds to the calculation with the
mixing parameter a = 2.3, which gives the curve closest to the
data at xC ≥ 1.5. The thin dashed curve corresponds to the
Reid DWF obtained by the minimal relativistic scheme (MRS).

where the function ∆(|k|) has been obtained from the
equation

Φ̃(u)(|k|) = N−1
D

M2
D

m2

[
Ũ2(|k|) + W̃ 2(|k|)

]
. (28)

Figure 9 presents the analyzing power T20 calculated
by using the functions Ũ , W̃ including the non-nucleonic

components in the DWF, according to [8,13]. It is evident
from fig. 9 that the inclusion of non-nucleonic components
in the DWF improves the description of the data for T20 at
xC > 1. The best description of the observable is obtained
for the value a = 2.3 of the parameter a entering into
eqs. (26),(27).

4 Summary

The main goal of this paper is to study the reaction of
deuteron fragmentation into pions within the framework
of the nucleon model of the deuteron and to find the role of
the non-nucleonic degrees of freedom in a deuteron in this
process. The main results can be summarized as follows.

1. It is quite incorrect to use the non-relativistic deuteron
wave function for the analysis of D-N fragmentation
into hadrons, in particular pions. Relativistic effects
are sizeable, especially in the kinematic region corre-
sponding to short intra-deuteron distances or large x.
It is evident from the behavior of the inclusive pion
spectrum and particularly the tensor analyzing power
T20 at large x.

2. At the present time, the state of theory is such that the
unique procedure to include relativistic effects in the
deuteron has not been found yet. An extreme sensi-
tivity to different methods of the relativistic deuteron
wave function is found for T20 at x ≥ 1.

3. A large sensitivity of the inclusive spectrum of pions
to the vertex of the NN → πX process can be seen
from fig. 2. In contrast to this, small sensitivity of
T20 to this vertex is found, as seen from fig. 5. This
polarization observable is very sensitive to the DWF
form (figs. 5-7).

4. Very interesting data on T20 showing approximately
zero values at xC ≥ 1 are not reproduced by the
theoretical calculation using even different kinds
of relativistic DWF. This may indicate a possible
existence of non-nucleonic degrees of freedom or a
basically new mechanism of pion production in the
kinematic region forbidden for free N -N scattering.

5. For the deuteron fragmentation into protons emitted
forward, the tensor analyzing power T20 is not de-
scribed by standard nuclear physics using the nucleon
degrees of freedom at xC ≥ 1.7 [8]. On the contrary, T20

for the fragmentation Dp → πX cannot be described
within the same assumptions over all region xC ≥ 1.
The inclusion of the non-nucleonic degrees of freedom
within the approach suggested in [13,8], the use of
which has reproduced the data for the proton spectrum
in the deuteron stripping, allows us also to describe the
inclusive pion spectrum at all values of xC rather well
(fig. 8). However, the information contained in both
observables is redundant, since it is the same deuteron
properties that are the main ingredient in the analysis
of both Dp → pX and Dp → πX reactions in the
IA. Therefore, the calculation of the tensor analyzing
power including the non-nucleonic degrees of freedom
in fragmentation of the deuteron into pions can give
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us new independent information about the deuteron
structure at small N -N distances and its comparison
with the data can be considered as a test of the mod-
ified DWF model used. These results are presented in
fig. 9 and show some improvement of the description
of the data for T20 [11], especially at xC > 1.3, if we
assume that the non-nucleonic degrees of freedom
contribute mainly to the S- and D-waves of the DWF.
Of course, the inclusion of the non-nucleonic degrees of
freedom in the analysis of T20 is approximate, but can
be considered as the indication of an important role
of these degrees of freedom in studying polarization
phenomena in the type of reactions considered.
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